Survival and Extinction of Caring Double-branching Annihilating Random Walk

نویسنده

  • JOCHEN BLATH
چکیده

Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiveness, which in general makes them exceptionally hard to analyse and in particular highly sensitive in their qualitative long-time behaviour to even slight alterations of the branching and annihilation mechanisms. In this short note, we introduce so-called caring double-branching annihilating random walk (cDBARW) onZ, and investigate its long-time behaviour. It turns out that it either allows survival with positive probability if the branching rate is greater than 1/2, or a.s. extinction if the branching rate is smaller than 1/3 and (additionally) branchings are only admitted for particles which have at least one neighbouring particle (so-called ‘cooperative branching’). Further, we show a.s. extinction for all branching rates for a variant of this model, where branching is only allowed if offspring can be placed at odd distance between each other. It is the latter (extinction-type) results which seem remarkable, since they appear to hint at a general extinction result for a non-trivial parameter range in the so-called ‘parity-preserving universality class’, suggesting the existence of a ‘true’ phase transition. The rigorous proof of such a non-trivial phase transition remains a particularly challenging open problem. 1SUPPORTED BY THE DFG FORSCHERGRUPPE 718, BERLIN AND LEIPZIG, AND BY THE HAUSDORFF INSTITUTE FOR MATHEMATICS, BONN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Survival and Extinction of Caring Double-branching Annihilating Random Walk

Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiven...

متن کامل

Propagation and extinction in branching annihilating random walks.

We investigate the temporal evolution and spatial propagation of branching annihilating random walks in one dimension. Depending on the branching and annihilation rates, a few-particle initial state can evolve to a propagating finite density wave, or extinction may occur, in which the number of particles vanishes in the long-time limit. The number parity conserving case where 2-offspring are pr...

متن کامل

Coexistence in Locally Regulated Competing Populations and Survival of Barw: Full

Note: This paper is the full version of Blath, Etheridge & Meredith (2007). It has also successfully undergone the peer-reviewing process of Annals of Applied Probability, but proved too long to be published in its entirety. It contains full technical details and additional remarks. We propose two models of the evolution of a pair of competing populations. Both are lattice based. The first is a...

متن کامل

Dependent double branching annihilating random walk

Double (or parity conserving) branching annihilating random walk, introduced in [19], is a one-dimensional non-attractive particle system in which positive and negative particles perform nearest neighbor hopping, produce two offsprings to neighboring lattice points and annihilate when they meet. Given an odd number of initial particles, positive recurrence as seen from the leftmost particle pos...

متن کامل

A branching random walk among disasters

We consider a branching random walk in a random space-time environment of disasters where each particle is killed when meeting a disaster. This extends the model of the “random walk in a disastrous random environment” introduced by [15]. We obtain a criterion for positive survival probability, see Theorem 1.1. The proofs for the subcritical and the supercritical cases follow standard arguments,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011